https://www.mineraliengrosshandel.com
https://www.mineralbox.biz
https://weloveminerals.com/
https://www.mineral-bosse.de
https://www.edelsteine-neuburg.de
'._('einklappen').'
 

banded iron formation

Additional Functions

Pictures (25 Images total)

BIF Bändererz
Views (File:
1403282280
): 15083
BIF Bändererz
BIF - (Banded iron formation; Bändererz),;
Karijini National Park, Western Australia
Copyright: Graeme Churchard; Contribution: Collector
Rock: banded iron formation
Image: 1403282280
Rating: 10 (votes: 1)
License: Creative Commons - Attribution-Noncommercial-Share Alike (CC-BY-NC-SA) V.3.0
BIF Bändererz

BIF - (Banded iron formation; Bändererz),;
Karijini National Park, Western Australia

Copyright: Graeme Churchard
Contribution: Collector 2014-06-20
Itabirit
Views (File:
1343494001
): 2268
Itabirit
Serra dos Carajas, Pará, Brasilin
Copyright: aca; Contribution: Collector
Rock: itabirite
Image: 1343494001
Rating: 8.5 (votes: 2)
License: Usage for Mineralienatlas project only
Itabirit

Serra dos Carajas, Pará, Brasilin

Copyright: aca
Contribution: Collector 2012-07-28
BIF
Views (File:
1182333682
): 12877
BIF
Bändererz von Nordamerika; Museum für Mineralogie und Geologie, Dresden
Copyright: Schluchti; Contribution: Collector
Rock: banded iron formation, iron rich sedimentary rocks
Image: 1182333682
Rating: 9 (votes: 1)
License: Usage for Mineralienatlas project only
BIF

Bändererz von Nordamerika; Museum für Mineralogie und Geologie, Dresden

Copyright: Schluchti
Contribution: Collector 2007-06-20
Itabirit
Views (File:
1332700260
): 3414
Itabirit
=Hämatit. Gouvea, Diamantina, Minas Gerais, Südosten, Brasilien. B:25cm.
Copyright: Doc Diether; Contribution: Doc Diether
Collection: Geol. Inst. Heidelberg
Location: Brasilien/Südosten (Região Sudeste)/Minas Gerais/Diamantina/Gouvea
Mineral: Hematite
Rock: itabirite
Image: 1332700260
Rating: 8 (votes: 1)
License: Usage for Mineralienatlas project only
Itabirit

=Hämatit. Gouvea, Diamantina, Minas Gerais, Südosten, Brasilien. B:25cm.

Collection: Geol. Inst. Heidelberg
Copyright: Doc Diether
Contribution: Doc Diether 2012-03-25
Locality: Gouvea / Diamantina / Minas Gerais / Südosten (Região Sudeste) / Brasilien
Tigereisen
Views (File:
1562503843
): 2194
Tigereisen
Hamersley Ranch, Pilbara, West Australien, Australien - 28 x 8 cm
Copyright: Mineralroli; Contribution: Mineralroli
Collection: Mineralroli
Location: Australien/Western Australia/Pilbara/Hamersley Ranges
Rock: banded iron formation, tiger iron
Image: 1562503843
Rating: 8 (votes: 1)
License: Usage for Mineralienatlas project only
Tigereisen

Hamersley Ranch, Pilbara, West Australien, Australien - 28 x 8 cm

Collection: Mineralroli
Copyright: Mineralroli
Contribution: Mineralroli 2019-07-07
Locality: Hamersley Ranges / Pilbara / Western Australia / Australien

Additional information / Summary

S.a. detailliert unter Geologisches Portrait/Lagerstätten : http://www.mineralienatlas.de/lexikon/index.php/Geologisches%20Portrait/Lagerst%E4tten/B%E4ndererze%20%28BIF%29

Grouping

Belonging to

Rocks  ⇒ sedimentary rocks and sediments  ⇒ iron rich sedimentary rocks

Next lower segment

itabirite

jaspilite

taconite

Other languages

German

Bändererz

English

banded iron formation

Spanish

formación de hierro bandeado

Alternative Name

English

BIF

Detailed description

Engl.: / Nomenklatur: BIF=Banded Iron Formation

Bändererze sind eisenhaltige, marine Sedimentgesteine, welche hauptsächlich im Präkambrium(Paläozoikum, vor ca. 2,5-1,8 Mrd. Jahren) abgelagert wurden und das durch metallhaltige Lagen eine charakteristische Schichtstruktur besitzen. Während dieser geologischen Ära gab es auf der Erde noch immer die originäre Atmosphäre aus Stickstoff und Kohlendioxid. Was für den menschlichen oder tierischen Organismus tödlich gewesen wäre, war jedoch lebensfreundlich für viele verschiedene Mikroorganismen (besonders Cyanobakterien) im Meer, inklusive der ersten Photosynthesizer. Diese Organismen stießen Sauerstoff als Abfallprodukt ab; dieser Sauerstoff verband sich jedoch sofort mit dem in großen Mengen gelösten Eisen unter Bildung der Eisenoxide Magnetit und Hämatit.

Im zur Schichtung senkrechten Schnitt erscheinen die vor allem aus Eisenmineralen bestehenden Schichten als Bänderstruktur, der das Erz im Deutschen wie auch im Englischen (Banded Iron Formation, abgekürzt BIF) seinen Namen verdankt.

Bändererze haben einen geschichteten Aufbau, wobei sich eisenhaltige Lagen mit Hornsteinlagen (engl. chert, mikro-kryptokristalliner Quarz von < 30μm Korngröße) abwechseln. Die in den eisenhaltigen Lagen hauptsächlich auftretende Minerale sind Magnetit (Fe3O4) und Hämatit (Fe2O3) (auch Grunerit, Limonit, Siderit und Pyrit). Einige bekannte Bändererze bestehen zusätzlich noch aus Tigeraugen-Quarz, der sich bildet, wenn Quarz das faserige Mineral Krokidolith (bekannt als blauer Asbest) ersetzt. Die einzelnen Lagen sind einige Millimeter bis einige Zentimeter dick und verleihen dem Gestein die namengebende Bänderung. Sie können in vielfacher Wiederholung auftreten, so dass Bändererzformationen Mächtigkeiten (Schichtdicken) von etwa 50–600 m aufweisen können, sie sind damit wirtschaftlich bedeutsame Eisenerzlagerstätten

Die einzelnen Lagen sind von wenigen mm bis einige cm mächtig. Die bekanntesten BIF- Schichten sind zwischen 50-500 m mächtig und bilden wichtige Eisenerzlagerstätten.

Große Vorkommen mit einem Alter von 2,6-2,1 Ga (Mrd. Jahren) befinden sich im Transvaal, Südafrika. In Australien sind große Vorräte in den 2,7-2,4 Ga alten Bändererzen der Hamersley Range vorhanden. In Krivoi Rog in der Ukraine sind die Bändererze 2,6-1,9 Ga alt, etwa gleich alt sind die im Staat Minas Gerais (Itabirite), Brasilien, und im Labradortrog in Kanada. Manche Vorkommen sind später durch tektonische oder regionalmetamorphe Vorgänge einmal oder mehrfach metamorph überprägt worden.

Die wichtigsten Lagerstätten sind:

  • Lake Superior (USA)
  • Saskatchewan (Canada)
  • Kuruman, TRansvaal (Südafrika)
  • Morro do Urucum (Brasilien)
  • Harmersley Range (Australien)
  • Krivoy Rog (Ukraine)
  • Sudan

Das paläozoische Bändererz ist nicht identisch mit dem karbonischen Kohleneisenstein (englisch: (black) banded ironstone

Entstehung der Bändererze

Die Entstehung der Bändererze wurde intensiv untersucht, sie ist jedoch bis heute nicht abschließend geklärt. Einer der Hauptdiskussionspunkte betrifft die Rolle von Bakterien bei der Entstehung der Bändererze sowie die zeitliche Entwicklung der Sauerstoff-Konzentration in Verbindung mit der Frage, ob der Sauerstoff zum Zeitpunkt der Entstehung der Bändererze in ausreichend hohen Konzentrationen in der damaligen Atmosphäre vorhanden war.

Bändererze entstanden im Archaikum (vor 3,8 Ga bis 2,5 Ga) und im Proterozoikum (vor 2,5 Ga bis 1,8 Ga). Das im Zuge untermeerischen Vulkanismus in das Meer abgegebene Eisen sowie möglicherweise das durch verschiedene Ursachen in den freien Verwitterungskreislauf der Erde geratende Eisen wurde nicht wie heute durch den freien Sauerstoff (O2, Dioxygen) in Meer und Atmosphäre sofort oxidiert, sondern konnte sich wegen des in der frühen Atmosphäre der Erde fehlenden O2 in hohen Konzentrationen im Meerwasser anreichern, bis es durch unterschiedliche Vorgänge gebunden wurde und sich in dünnen Schichten am Meeresboden sammelte.

Vor etwa 3,8 Ga entwickelten oxygen phototrophe Mikroorganismen, wahrscheinlich Vorfahren der heutigen Cyanobakterien, eine Form der Photosynthese, bei der O2 als Abfallprodukt gebildet wurde (sogenannte oxygene Photosynthese). Von dieser Zeit an wurde das zweiwertige Eisen zu dreiwertigem oxidiert und in Form von Hydroxiden und Oxiden gefällt, die in Schichten abgelagert wurden. Dieser Prozess verzehrte den in großen Mengen mikrobiell produzierten Sauerstoff. Der Vorgang verlief zyklisch über einen Zeitraum von mehreren 100 Mio. Jahren, in welcher der mikrobiell gebildete freie Sauerstoff stets vollständig durch die Oxidation des vorhandenen gelösten Eisens gebunden wurde. Die Ursachen des zyklischen Verlaufs der Eisenfällung sind nicht bekannt. Durch Diagenese bildeten sich aus den Ablagerungen die Bändereisenerze.

Erst als das zweiwertige Eisen erschöpft und deshalb die Bändererzentstehung abgeschlossen war, konnte der Sauerstoffgehalt im Meerwasser und in der Erdatmosphäre auf Werte oberhalb von 0,2 bis 0,5 Prozent steigen. Dies wird die große Sauerstoffkatastrophe genannt. In begrenztem Maße bildeten sich Bändererze noch im Cryogenium (vor 750 bis 600 Ma) und im Ordovizium (vor etwa 450 Ma) Der Prozess verlief zyklisch über einen Zeitraum von mehreren 100 Mio. Jahren, in der der freie Sauerstoff der Atmosphäre und des Meeres stets komplett durch die Oxidation des vorhandenen freien Eisens gebunden wurde. Die Ursachen des zyklischen Verlaufs der Eisenfällung sind nicht bekannt.

Generell wird angenommen, dass das Eisen vulkanischen Ursprungs war und durch Exhalation an den Mittelozeanischen Rücken und entlang von Tiefseegräben dem Meerwasser zugeführt wurde. Die Untersuchung der Verteilung und der Gehalte an Seltenen Erden ergab einen anormal hohen Gehalt an Europium im Gestein, welcher die vulkanische Herkunft bestätigt, ebenso die Nd-Isotopenzusammensetzung der Hornsteinlagen. Gegen die These, dass das Eisen aus der Verwitterung kontinentaler Gesteine stammt, spricht ebenfalls der geringe Gehalt an Aluminium in manchen BIFs und die Tatsache, dass meistens keine klastischen Sedimente wie Tone zusammen mit den Bändererzen auftreten.

Eine weitere Erklärung für die Entstehung der BIF-Erze ist ein Zusammenspiel von biologischer Aktivität und durch vertikale Strömungen in die oberen Wasserschichten und ins Flachwasser gelangtes Eisen.

Durch die Sauerstoffproduktion aus der oxygenen Photosynthese der zu dieser Zeit existierenden Cyanobakterien wurde das im Meerwasser gelöste Eisen unmittelbar oxidiert und es bildeten sich schwer wasserlösliche hydroxidische und oxidische Verbindungen des dreiwertigen Eisens (Hämatit, Magnetit; bzw. Eisen(III)hydroxid und Eisen(III)oxihydrate). Diese schwer wasserlöslichen Minerale sedimentierten, durch Wasserabgabe entstanden bei der Diagenese daraus die Minerale Magnetit und Hämatit. Es wird angenommen, dass die Aufnahme des Sauerstoffs durch das im Meerwasser gelöste Eisen immer nur eine gewisse Zeit andauerte, nämlich so lange, bis das verfügbare Eisen aufgebraucht war und der frei werdende Sauerstoff nicht mehr durch Eisen gebunden wurde. Dadurch soll eine für die Cyanobakterien schädliche Sauerstoffkonzentration entstanden sein, die zum Absterben der Bakterien führte. Nachfolgend kam es dann zur Sedimentation der Hornsteine. Diese sind anscheinend durch direkte abiotische Ausfällung von Siliziumdioxid und durch Siliziumdioxid abscheidende Organismen gebildet worden.

Eine weitere Möglichkeit der Oxidation zweiwertigen Eisens ist die Tätigkeit anoxygen phototropher Bakterien, die mit Licht als Energiequelle Biomasse aus Kohlendioxid und Wasser erzeugen, indem sie zweiwertiges Eisen als Reduktionsmittel verwenden und dieses dadurch zu dreiwertigem Eisen oxidieren, dabei aber keinen Sauerstoff (Dioxygen, O2) bilden. Modellrechnungen haben ergeben, dass eine verhältnismäßig dünne Schicht freischwebender derartiger anoxygen phototropher Bakterien ausreicht, um alles gelöste Eisen im Meerwasser zu oxidieren und somit auszufällen.

Auch eine abiotische Entstehung wird für möglich gehalten: Ionen des zweiwertigen Eisens werden durch UV-Strahlung und Blaulicht bis zu einer Wellenlänge von etwa 400 nm zu dreiwertigen Eisen-Ionen oxidiert, wobei die Elektronen auf Wasserstoff-Ionen übertragen werden und damit molekularer, elementarer Wasserstoff (H2) entsteht: 2 Fe2+ + 2 H+ → 2 Fe3+ + H2. Die dreiwertigen Eisen-Ionen bilden zusammen mit Wasser Hämatit oder zusammen mit zweiwertigen Eisen-Ionen und Wasser Magnetit.

Die Entstehung der nach langer Zeit am Ausgang des Proterozoikums auftretenden Bändererze ist ebenfalls nicht völlig geklärt. Einerseits werden sie als Beleg für die Schneeball Erde-Hypothese gesehen: Die vollständige Eisbedeckung der Ozeane ist bei den damals schon hohen Sauerstoffkonzentrationen in Meer und Atmosphäre die Bedingung dafür, dass das Meerwasser anoxisch wird und gelöstes Eisen in großer Menge aufnehmen kann. Das Eisen wird mit dem Schmelzen des Eises oxidiert und scheidet sich als Sediment ab. Andererseits werden sie als Bildung von metallreichen, anoxischen Meereswässern erklärt. Ihr Metallgehalt ist vulkanischen Ursprungs, ihr Bildungsort sind Rift-Becken tektonischen Ursprungs, deren bodennahen Wasserschichten oft anoxisch sind. Für das Verschwinden der gebänderten Eisenerze vor rund 1,8 Mrd Jahren wird eine bessere Durchmischung des Ozeans mit Sauerstoff vermutet, möglicherweise im Gefolge des Sudbury-Impaktes. (Quelle: wikipedia)

Charakteristik

Die wichtigsten der vor 2,5 - 1,8 Ga (Proterozoikum) entstandenen Gesteine sind Jaspilite (feingebänderte Eisenquarzite aus Magnetit, Hämatit sowie Martit), Taconite (mit Grünsteinen gebänderte Jaspilite mit Magnetit, Hämatit, Siderit und Greenalith), sowie Itabirite (regionalmetamorphe Hämatit-Quarz-Gesteine, bzw. Eisenglimmerschiefer, welche chemisch fast nur aus SiO2 und Fe2O3 bestehen und deren Quarz-Hämatitschichten wechselgelagert sind).

Im zur Schichtung senkrechten Schnitt erscheinen die vor allem aus Eisenmineralien bestehenden Schichten als Bänderstruktur, der das Erz im Deutschen (Bändererz) wie auch im Englischen (Banded Iron Formation, abgekürzt BIF) seinen Namen verdankt.

Bändererze haben einen geschichteten Aufbau, wobei sich eisenhaltige Lagen mit Hornsteinlagen (engl. chert, mikro-kryptokristalliner Quarz von < 30μm Korngröße) abwechseln. Die in den eisenhaltigen Lagen hauptsächlich auftretende Minerale sind Magnetit (Fe3O4) und Hämatit (Fe2O3) (auch Grunerit, Limonit, Siderit und Pyrit). Einige bekannte Bändererze bestehen zusätzlich noch aus Tigeraugen-Quarz, der sich bildet, wenn Quarz das faserige Mineral Krokidolith (bekannt als blauer Asbest) ersetzt. Die einzelnen Lagen sind einige Millimeter bis einige Zentimeter dick und verleihen dem Gestein die namengebende Bänderung. Sie können in vielfacher Wiederholung auftreten, so dass Bändererzformationen Mächtigkeiten (Schichtdicken) von etwa 50–600 m aufweisen können, sie sind damit wirtschaftlich bedeutsame Eisenerzlagerstätten

Die einzelnen Lagen sind von wenigen mm bis einige cm mächtig. Die bekanntesten BIF- Schichten sind zwischen 50-500 m mächtig und bilden wichtige Eisenerzlagerstätten.

BIF-Typen

Es gibt drei Typen von BIF:

  • Algoma-Typ - Linsenförmig und mit Grauwacken und Vulkaniten (Lagerstätten zum Beispiel in Canada und Australien). Die vulkanische Aktivität war submarin.
  • Superior-Typ - Großflächigere Ausdehnung wegen seiner Entstehung in Schelfgebieten. Eine Beziehung zu vulkanischen Aktivitäten ist bei diesem Typ nicht offensichtlich.
  • Rapitan-Typ - welcher am Ende des Neoproterozoikums (Riphäikum/Sinium/Keweenavan) in Zusammenhang mit glazialen Sedimenten auftreten (Bsp. in Menhouhou, SE-Marokko).

External links

References, links, and literature

Links


Autor

  • Peter Seroka

Gesteinszuordnungen (3)

Part of the following formations

Locations with GPS information

IDs

GUSID (Global unique identifier short form) YGO1fTtjH0amHu5Rd-OBCw
GUID (Global unique identifier) 7DB56360-633B-461F-A61E-EE5177E3810B
Database ID 324